Newton method
KazuruMr OZAWA

1 Fixed-point iteration
Consider the sequence {x,} given by
$k+1:F($k)7 k:O,l,..., (].)

where F' : R — R. This iteration proceeds as in Figure 1. For the convergence of {z,} generated
by (1), we have the following theorem (the fixed-point theorem):

4 T T T T T T T
- y:x .
3_ -
[y=F(x) L]
)| o |
N
| [N
1 | [
/ : o
1 | L 1
| 1 [
l 1 [
B | | [.
‘ | T
0 I 1 T 1 | T 1 1
0 1 2 3 4
Zg Zq Lo «

Figure 1: Fixed-point iteration

Theorem 1 Let us assume that the function F satisfies the following conditions:
1. F(x) is contiguous on the interval I = [a, b].
2. Forallxel, F(x)el.
3. For any x, y € I, there exists a constant 0 < L < 1, such that
F(z) - F(y)| < L|z -y,

where L is independent of x and y.

Then the sequence {x,} generated by (1) with xy € I converges to the unique point o € I which
satisfies

F(a) = a. (2)

The point given by (2) is called the fized-point, and the iteration method given by (1) is called the
fized-point iteration.

Proof From the second assumption, we have xy € I (k =1,2,...), if 29 € I. Therefore, from the
third assumption, we have

[Th41 — x| = [F(wg) — Fap-1) | < Llzg — xp-]- (3)
Using this, we have for any m > 0

0 <I[Zprm — Tl < |Tpim = Tl + [Thim1 = Topmol + -+ |Tpp1 — g

-1,
= L_1L|x1—m0\—>0, k — oo.

Thus the sequence {z}} is a Cauchy sequence on I, which has a limit in I. Let « be the limit of
the sequence {zy}, then we have

a= lim x5y = lim F(zg) = F(lim zx) = F(a), (5)
k—o0 k—o0 k—o0

since F' is continuous. This means « is a fixed-point of F'. The point « is unique, since if this is
not the case, then for another fixed-point g

la = f] = [F(a) = F(B)| < Lla =] < |a—f,

which is a contradiction. Q.E.D

Corollary Assume that F(z) is differentiable on (a,b) and |F'(z)| < 1 on I. Then the sequence
{zi} generated by (1) with xo € I converges to «, if the first two conditions of Theorem 1 are
satisfied.

2 Newton method

2.1 Newton method as a fixed-point iteration

Consider the problem of solving the nonlinear equation
f(z) =0, (6)

where f: R — R. Let F(z) be
F(x) =z — f(x)/f'(), (7)

then the solution « of the equation (6) is also the fixed-point of F'(x). Since the derivative of F(z)

at a is given by
N2 — f(2) ' (x

2

the condition of the corollary is satisfied in the neighbor of «, and therefore the sequence

Trt1 :xk;_f(xk)/f/(xk)v k=0,1,... (9)

converges to the solution of f(z) = 0, when the starting value z¢ is located at the neighbor of a.
The method defined by (9) is called the Newton method.

Figure 2: Geometrical interpretation of the Newton method.

2.2 Convergence rate
Let ex be the error of xy, i.e., ey = xp — «, then from the Taylor expansion of F(z), we have
ep+1 = Tpy1 — @ = F(zg) — F(a)
! 1 " 2 (10)
= F'(a) (rk — 0) + 7 F(6) (a5 —)

where £ is some value between « and x,. From this we have | e | < c| €2 |, where ¢ = max, | F"'(z) |/2.

Example 1 Consider the equation
2 —2cx4+2=0. (11)
We solve the equation by the Newton method (9) with z, = —1.1.

2.3 Simultaneous equation

Consider the system of the equations

fl(l‘l,mQ,...,.Tn) :0
Ti,Toye..,T,) =10
falzy, 29, ... 2,) =0

3

Table 1: Newton method applied to the equation 23 — 22 + 2 = 0.

Ly f(wk)

-1.100000000000000e+00 2.869e+00
-2.860122699386503e+00 -1.568e+01
-2.164657223087728e+00 -3.814e+00
.848356485722793e+00 -6.181e-01
-1.773434389574454e+00 -3.071e-02
-1.769304621075152e+00 -9.067e-05
-1.769292354346692e+00 -7.987e-10
-1.769292354238631e+00 8.327e-17

~N O O WN - O
|
[y

and the Newton method for solving the equation. Denoting the k£ th approximations by x&k}, e x,[f],
the Newton method for solving (12) is given by
k+1 k k k k
a:[1+] I‘[l] 1(3:[1],m[2],...,:c£l])
[k+1] (] (k] [K] [k]
x x Ty Ly ey X
2 _ 2 _ gl f2(1 2 n) ’ k=01, ’ (13)
J:,[fﬂ] a:,[f] fn(x[lk},a:gk],...,xw)
where J is the Jacobian matrix given by
oh oK ... YA
oz O0xo 0zn
of2 Of ... 9f
J = 8;'B1 8;?2 8@1
s Of ... O
Oy Oxzz T Own

In computing (13), we never calculate the inverse matrix J~!, but instead solve the simultaneous
linear equation

d, fl(a:[lk],:cgk],...,:c%])
P D L R R 14
Cin fn(a:[lk],a:g;],...,x,[f])
by the Gaussian elimination, and after that we calculate a:z[-kﬂ] = a:yd +d;i(i=1,...,n).

In computing the Newton method, the computational costs for the Jacobian matrix J and for
solving (14) are proportional to n? and n3, respectively. To reduce these costs, particularly when n

is large, we usually use the quasi Newton method, in which the Jacobian matrix is calculated only
(0)

for z; 7 (i =1,...,n) and is fixed until convergence.
Next we consider the convergence of the Newton method for multi-dimensional cases. Let «;
be the ith solution, that is the value f(aq,...,a,) = 0, where f € R", and xyﬂ be the kth

approximation to a;. Here, we use the vector notations

a=(a;,...,q,)", k= (a:gk},...,xw)T,

ey = (A2l e)T
J(@ 2l = g,

Then the error of ¥, that is el*l = zl¥ — o, is given by
ettt = elfl — g1 £k, (15)

From the Taylor expansion, we have

F@l) = (@) + Il @ - @) + 02l - af?)

16
= J(al) et + O(lel|?) i
Substituting this into (15), we have
le*]| = o(le!)?), (17)
which means that the Newton method (13) converges quadratically.
Example 2 Consider the simultaneous nonlinear equation
22 2
= —— = —]_ =
g(z,y) =2 —y=0
The Newton method for this equation is
— =gy f+1y9
k+1 — T
fgy Ty 9 k=0,1,... (19)
y 9u f = fu g
N T
where
of of
fI - 8.’1:7 fy - ay)
99 _of

ga::%v gy_a_yv

and f, g, fz, fy, 92 and gy are evaluated at (z, y,). We find the solution in the region > 0, y > 0
by the Newton method. The exact solution in the region is

T = _9% V657 — 1.441874268 - - -, Y= _E)% V657 = 2.079001404 - - -

Here is the C program of the Newton method.

O©COONOOIPWN -

/*

*/

Newton method for the equation
f(x,y)=0
g(x,y)=0

#include <stdio.h>
#include <math.h>

#define eps 1.0e-15

: {

: }

: void func(x,y,f,g,fx,fy,gx,gy)

double x,y,*f,*g,*fx,*fy,*gx,*gy;

*xf=-x*x/4-y*y/9+1; *fx=-x/2; *fy=-2%y/9;
*g=X*X-y; *gX=2%x; *gy=-1;

: main()

: {

double d,e,x0,y0,x1,y1;
double f,g,fx,fy,gx,gy;

int k=0;

x0=1; y0=1;

func(x0, x0, &f, &g, &fx, &fy, &gx, &gy);

e=fabs(f)+fabs(g);

printf (" %3d

do {

%12.8f

d=fx*xgy-fy*gx;
x1=x0+(-gy*f+fy*g)/d;
yl=y0+(gx*xf-fx*g)/d;

x0=x1; yO=yl; k++;

func(x0, yO, &f, &g, &fx, &fy, &gx, &gy);

e=fabs(f)+fabs(g) ;

printf (" %3d %12.8f
} while (e>eps);

»l

2.8f %12.4e \n",k,x0,y0,e);

%12.8f %12.4e \n",k,x0,y0,e);

Table 2: Newton method applied to equation (18).

k Ty Yk, ‘f($kayk)‘*‘|g($k7ykﬂ
0 1.00000000 1.00000000 6.3889e-01
1 1.67647059 2.35294118 7.7540e-01
2 1.46150594 2.08978983 6.5457e-02
3 1.44201231 2.07901951 4.8789e-04
4 1.44187427 2.07900140 2.3854e-08
5 1.44187427 2.07900140 3.1499%e-16

