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1 Introduction

In the series of this lecture, I will introduce the conjugate gradient method, which solves
efficiently large scale sparse linear simultaneous equations.

2 Minimization problem

Consider the quadratic function given by

Q (x) =
1

2
xT A x − bT x, A ∈ R

n×n, b, x ∈ R
n, (1)

where A is a symmetric positive definite matrix. This quadratic function attains its minimum
at the solution of the linear algebraic equation A x = b, which will be denoted by x∗. A
variety of methods for solving this minimization problem have been derived. The general
form of these algorithms is

xk+1 = xk − αk pk, k = 0, 1, . . . , (2)

where pk is the direction vector at the kth iteration. The parameter αk is determined so as
to minimize the objective function Q(x), that is, αk is the value satisfying

Q (xk − αk pk) = min
α

Q (xk − α pk). (3)

Since in the expression

Q (xk − αk pk) =
1

2
(pT

k A pk) α2

k − pT
k (A xk − b) αk +

1

2
xT

k (Axk − 2 b), (4)

the coefficients of α2
k is positive, this function attains its minimum at

αk = pT
k (A xk − b)/(pT

k A pk), (5)

for the fixed xk and pk.
Next we consider the method for choosing the direction vectors pk.

3 Univariate iteration

If we put pk = ei (the unit vector whose ith entry is and the others are 0) in (2), then with
the αk given by (5) we have

xk+1 = xk − αk ei = xk −
1

aii

(

n
∑

j=1

aij xk
j − bi

)

ei, (6)
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since

eT
i A ei = aii and eT

i (A x − b) =
n
∑

j=1

aij xj − bi.

This means that the point xk+1
given by (6) is the minimum point which can be obtained

by changing only the ith component of xk. Thus, the first n successive iterations of (6) with

p0 = e1, p1 = e2, . . . , pn−1 = en (7)

is equivalent to the one iteration of the well-known Gauss–Seidel method.

4 Steepest descent method

On the other hand, if we choose pk as the gradient vector of Q(x) at the point xk, then we
have the iteration method given by

xk+1 = xk − αk (A xk − b), (8)

since
pk = ∇Q(xk) = A xk − b, (9)

where

∇Q(x) =

(

∂Q

∂x1

, . . . ,
∂Q

∂xn

)T

.

This method is called the steepest descent method.

5 Conjugate direction method

Let us consider the case that pk are chosen as

pT
i A pj = 0, i 6= j. (10)

When the direction vectors pk are taken in this way, the method is called the conjugate
direction method. The vectors pi and pj satisfying (10) are said to be A-conjugate. The
conjugate direction method converges in n steps, if no roundoff occurs. Here we show the
convergence of the method.

First of all, notice that

(A xk+1 − b)T pj = (A xk − αk A pk − b)T pj

= (A xk − b)T pj − αk (A pk)
T pj

= (A xk − b)T pj,

and as a result, we have

(A xk+1 − b)Tpj =

{

(A xk − b)T pj, j < k,

0, j = k.
(11)
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Thus we have

(A xn − b)T pj = (A xn−1 − b)T pj = · · · = (A xj+1 − b)T pj = 0, j = 0, . . . , n − 1.

Therefore, the vector A xn−b is orthogonal to the n linearly independent vectors p0, . . . , pn−1,
that is, A xn − b = 0.

Here we consider the method of generating the conjugate vectors pj. One might think
of the method of selecting eigenvectors of A as pj (j = 1, . . . , n), since the two distinct
eigenvectors of A, say pi, pj, satisfy

pT
i A pj = λj pT

i pj = 0.

However, in general, the computation of all eigenvectors is far more expensive than solving
linear equations, so that this method is not practical at all. The conjugate gradient method
to be explained in the next section generates the conjugate direction vectors by using a
relatively cheap procedure.

6 Conjugate gradient method

Here we show the algorithm:

CG-1

1: Choose a small value ε > 0 and an initial guess x0

2: p0 = r0 = b − A x0, and compute (r0, r0)
3: k = 0
4: while ‖rk‖/‖b‖ ≥ ε do
5: αk = −(rk, pk)/(pk, A pk)
6: xk+1

= xk − αk pk

7: rk+1
= rk + αk A pk

8: βk = −(pk, A rk+1
)/(pk, A pk)

9: pk+1
= rk+1

+ βk pk

10: k = k + 1
11: end while

The vectors pk generated by the algorithm satisfy the conjugacy condition

(pk, A pj) = 0, 0 ≤ j < k, k = 1, . . . , n − 1, (12)

and the residuals rj(= b − A xj) satisfy the orthogonality condition (see Appendix)

(rk, rj) = 0, 0 ≤ j < k, k = 1, . . . , n − 1. (13)

Moreover, from the definitions of αj and βj we have

(pj , rj+1) = (pj , rj) + αj(pj , A pj) = 0, j = 0, 1, . . . (14)

(pj, A pj+1) = (pj , A rj+1) + βj (pj, A pj) = 0, j = 0, 1, . . . (15)

Using the relations above, we have a variant of CG-1:
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CG-2

1: Choose a small value ε > 0 and an initial guess x0

2: p0 = r0 = b − A x0, and compute (r0, r0)
3: k = 0
4: while ‖rk‖/‖b‖ ≥ ε do
5: αk = −(rk, rk)/(pk, A pk)
6: xk+1

= xk − αk pk

7: rk+1
= rk + αk A pk

8: βk = (rk+1
, rk+1

)/(rk, rk)
9: pk+1

= rk+1
+ βk pk

10: k = k + 1
11: end while

The number of the operations to be performed per step in this algorithm is shown in Table
1, which is a tremendous improvement over CG-1.

Table 1.Number of the operations per step in CG-2.

matrix-vector product 1
inner product 2
vector addition 3
scalar division 1
scalar comparison 1
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Here we show the experimantal result for some 10000-dimensional equation.
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Problem

1. For the function P (x) given by

P (x) =
1

2
(x − x∗)T A (x − x∗),

show that the relation

P (x) = Q(x) +
1

2
(x∗)T Ax∗,

where x∗ is the solution of A x = b, and Q(x) is the function given by (1).

2. Prove equation (4).

3. Show that the equation (9).

4. Show that the vectors p0, . . . , pn−1 given by (10) are linearly independent.

5. Show that equation (11) is valid.

6. Show that diagonal elements of symmetric positive definite matrices are positive.

7. For CG-1 make the table as Table 1.

8. Show that the two algorithms, CG-1 and CG-2, are equivalent.

9. Show that the matrix given by

A =























2 −1
0−1 2 −1

−1 2 −1
. . .

. . .
. . .

. . .
. . .

. . .
0 −1 2 −1

−1 2























is symmetric positive definite.

10. Solve the equation A x = b by CG-1 and CG-2, and compare the CPU times for the
case that A is the matrix given by above and the vector b is given by

b = A u,

where the dimension of the equation is n = 10000 and each component of u is a random
number in the range (0, 1).
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Appendix

1 Inner product

Let x = (x1, . . . , xn)T and y = (y1, . . . , yn)
T be real vectors in R

n. Then we define the inner
product of x and y by

(x, y) = xT y =
n
∑

i=1

xi yi. (16)

The inner product has the following properties:

(x, y) = (y, x)

(α x, y) = α (x, y), α is scalar

(x, y + z) = (x, y) + (x, z)

(x, x) ≥ 0, ‘=’ holds, only if x = 0.

(17)

For nonzero vectors x, y ∈ R
n, if (x, y) = 0 then the vectors x and y are said to be

orthogonal. If the vector x is orthogonal with the linearly independent n vectors pi (i =
1, . . . , n) in R

n, then x = 0, since from the assumption we have









pT
1

pT
2

...
pT

n









x = 0,

and the matrix in the left-hand side is nonsingular, so that x = 0.
Next we show the set of n vectors pi (i = 1, . . . , n) which are orthogonal with each other

are linearly independent. Since, if not so, that is, if pi (i = 1, . . . , n) are linearly dependent,
then there exist constants ci (i = 1, . . . , n), not necessarily all zero, such that

c1p1 + · · · + cnpn = 0.

From this we have for all j

0 = (c1p1 + · · · + cnpn, pj) = cj (pj , pj),

which means cj = 0. This contradicts the assumption.

2 Eigenvalues and eigenvectors of real symmetric matrices

When a real matrix A satisfies aij = aji, that is, AT = A, the matrix A is called real
symmetric matrix. The eigenvalues and eigenvectors of real symmetric matrices have the
following properties:
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1. Eigenvalues are real
Let λ and x be any eigenvalue end eigenvector of A, respectively. Then we have

(A x, x) = (λx, x) = λ̄ (x̄, x),

where ¯ denotes complex conjugate. On the other hand, from the property of inner
product we have

(A x, x) = (x̄, Ax) = λ (x̄, x).

These two expressions mean λ̄ = λ, since (x̄, x) 6= 0.

2. Orthogonality of eigenvectors
Let λi and λj be the eigenvalues of A and assume λi 6= λj. Then we have

(Axi, xj) = λi(xi, xj),

and
(Axi, xj) = (xi, Axj) = λj(xi, xj),

since A is symmetric, which implies

(λi − λj) (xi, xj) = 0.

Thus we have (xi, xj) = 0.

3 Quadratic form

For a real symmetric matrix A = (aij) and a real vector x = (x1, . . . , xn)T , the quantity
given by

Q (x) = xT A x = (x, A x) =

n
∑

i=1

n
∑

j=1

aij xi xj (18)

is called quadratic form. For any x 6= 0, if Q (x) > 0 (≥ 0), then the matrix A is said to be
positive (semi-) definite. Positive definite matrices have the following properties:

1. The diagonal elements of symmetric positive definite matrix is positive.
This is clear from

aii = (ei, A ei).

2. All the eigenvalues of symmetric positive definite matrix A are positive.
For any x 6= 0, if we transform x by y = T x, where T = (u1, . . . , un), and ui is the
eigenvector of A corresponding to λi, then

0 < xT A x = yT (T TA T ) y = yT (T−1A T ) y =

n
∑

i=1

λi y
2

i ,

which means λi > 0 for all i.
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4 Theorem

Here we show again the algorithm CG-1:

1: Choose a small value ε > 0 and initial guess x0

2: p0 = r0 = b − A x0, and compute (r0, r0)
3: k = 0
4: while (rk, rk) ≥ ε do
5: αk = −(rk, pk)/(pk, A pk)
6: xk+1

= xk − αk pk

7: rk+1 = rk + αk A pk

8: βk = −(pk, A rk+1
)/(pk, A pk)

9: pk+1
= rk+1

+ βk pk

10: k = k + 1
11: end while

Theorem Let A be an n× n symmetric positive definite matrix, and x∗ be the solution of
the equation A x = b. Then the vectors pk generated by CG-1 algorithm satisfy

pT
k A pj = 0, 0 ≤ j < k, k = 1, . . . , n − 1, (19)

rT
k rj = 0, 0 ≤ j < k, k = 1, . . . , n − 1, (20)

and pk 6= 0 unless xk = x∗.

Proof By the definitions of αj , βj and those of pj, rj+1, we have

pT
j rj+1 = pT

j rj + αj pT
j A pj = 0, j = 0, 1, . . . , (21)

pT
j A pj+1 = pT

j A rj+1 + βj pT
j A pj = 0, j = 0, 1, . . . (22)

Here we assume, as an induction hypothesis, that (19) and (20) hold for some k < n − 1.
Then we must show these hold for k +1. Since p0 = r0, these hold for k = 1. For any j < k,
using the 7th and 9th lines in CG-1, we have

rT
j rk+1 = rT

j (rk + αk A pk)

= rT
j rk + αk pT

k A rj

= rT
j rk + αk pT

k A (pj − βj−1 pj−1) = 0,

(23)

since all three terms in the last line vanish by induction hypothesis. Moreover, we have from
(21) and (22)

rT
k rk+1 = (pk − βk−1pk−1)

T rk+1

= −βk−1 pT
k−1 rk+1

= −βk−1 pT
k−1 (rk + αk A pk)

= 0.
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Thus we have shown that (20) is true also for k + 1. Next we have for any j < k

pT
j A pk+1 = pT

j A (rk+1 + βk pk) = pT
j A rk+1 = α−1

j (rj+1 − rj)
T rk+1 = 0, (24)

if αj 6= 0, which we will show later. Therefore (19) is true also for k + 1.
Finally, we show αj 6= 0. By the definition of pj and (22) we have

rT
j pj = rT

j (rj + βj−1 pj−1) = rT
j rj.

Hence we have
αj = −rT

j rj/p
T
j A pj .

Therefore, if αj = 0, then rj = 0, that is, xj = x∗ so that the process stops with xj .

5 Differentiation by vectors

Here we define the differentiation of the scalar-valued function J(x) with respect to its vector
argument by

J ′(x) :=















∂J
∂x

1

∂J
∂x

2

...

∂J
∂x

n















. (25)

According to this definition, we have

Q′(x) =

(

1

2
xT A x − bT x

)′

= A x − b,

(26)

since

Q(x) =
1

2

n
∑

i=1

aii x
2

i +
∑

i6=j

aij xi xj ,

bT x =

n
∑

i=1

bi xi,

and

∂

∂xk

Q(x) = akk xk +
∑

j 6=k

akj xj =
n
∑

j=1

akj xj ,

∂

∂xk

(bT x) = bk.
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